
A Floating-Point Arithmetic Logic Unit for
Uncertainty Propagation

Harry Sarson

Department of Engineering

University of Cambridge

IIB Project Final Report

Pembroke College May 2019

Acknowledgements

I would like to acknowledge my supervisor, Phillip Stanley-Marbell, who has gone above and
beyond to support my this year, and Ryan Voo, whose implementation of floating-point support in
the Sunflower Simulator aided me enormously. I am grateful to Alexa Belsham, Sophie Burke and
Julia Sarson for proof reading this report and giving feedback.

“The Son is the image of the invisible God, the firstborn over all creation. For in him all things were
created: things in heaven and on earth, visible and invisible, whether thrones or powers or rulers or
authorities; all things have been created through him and for him. He is before all things, and in
him all things hold together” (Colossians 1:15–17)

Technical Abstract Harry Sarson – Pembroke College

A Floating-Point Arithmetic Logic Unit for Uncertainty
Propagation

The numerical data used by computing algorithms often contains errors and digital representations
of real numbers are necessarily inexact. However, the standard floating-point types used today
cannot store or propagate any information about the uncertainty of the number; they only store
and propagate the best guess of the number as calculated by the processor’s arithmetic logic unit
(ALU). To better describe the approximate nature of computer arithmetic, this report proposes a
new numeric type, the approximate float, that stores uncertainty information.

Chapter 2 describes a framework for uncertainty propagation, built upon the linear uncertainty
propagation equations [20]. The uncertain framework defines an approximate float as the best guess
of the true value of a real number paired with the variance representing the range of possible true
values. Uncertainty-aware algorithms that use approximate floats estimate the variance of their
output as well as giving their best guess of the output’s true value. This best guess is equal to the
output of an equivalent algorithm that uses standard floats. For speed and energy efficiency, the
computation needed to propagate uncertainty through arithmetic operations should be implemented
in hardware.

The linear uncertainty propagation equations estimate the variance of z = f (x,y) using the variance
of x and y and the covariance between them. A representation of uncertainty is only useful if it can
be propagated through arithmetic operations. These equations provide rules that govern propagation
of variance and thus allow the distribution describing the uncertainty of an approximate float to be
represented by its mean (the best guess) and variance.

The linear uncertainty propagation equations use the covariance between the inputs to calculate
variance requiring the uncertain framework to store the covariance between every pair of approxi-
mate floats. Consequently, the complexity of each uncertainty-aware operation scales with the total
number of approximate floats in the framework, include those stored in memory. Section 2.6 finds
that the uncertain ALU requires far more hardware resources than a traditional floating-point ALU.

Technical Abstract Harry Sarson – Pembroke College

Chapter 3 proposes the uncertain non-standard extension to the RISC-V instruction set architecture
(ISA). The uncertain extension adds sixteen instructions of which four are completely new and
twelve are modified from existing floating-point instructions. The proposal adds eight uncertain reg-
isters — paired with the floating-point registers f8–15— and special memory for storing uncertainty
information. The uncertain extension supports the uncertain framework by allowing programmers
to utilise hardware for propagating uncertainty.

The author evaluated the uncertain framework by adding support for the uncertain extension in the
Sunflower Simulator [19]. Chapter 4 describes this implementation and how uncertainty-aware
software written in the C language can be compiled and run in the simulator using a modified
toolchain. Straightforward access to uncertainty propagation tools in C is a requirement for the
uncertain framework to be widely used. Using this method to compile C, the report shows that the
modifications required to software are minimal — that access to uncertainty propagation tools in C
is indeed straight forward.

Chapter 5 uses the Sunflower Simulator to evaluate the uncertain framework. Using taylor series
analysis, Section 5.2 bounds the error introduced by the linear uncertainty propagation equations.
The analysis shows that the estimate of the best guess is good if the input variance is small and the
estimate of the variance is good provided the function used is fairly linear. Section 5.3 discusses an
uncertainty-aware C implementation of the Newton-Raphson method which tests the results of the
uncertain framework for an iterative algorithm. The chapter finishes by discussing the possibility an
uncertain framework that does not store or propagate covariances. Such a framework is desirable as
it would increase performance and reduce the hardware costs. However, Section 5.4 finds that for
accurate estimation of the variance, the ALU requires access to covariances.

This report outlines the design of an uncertain framework. The framework allows programmers to
produce software that is aware of uncertainty, can make robust decisions and fails gracefully when
the accuracy of the numerical data it relies on has become unacceptably bad. Such software will be
performant due to hardware support for the operations that propagate uncertainty. This project has
implemented the uncertain extension in the Sunflower Simulator and so, today, uncertainty-aware
software can be run in simulation. The report presents the uncertain framework for uncertainty
propagation. The framework uses the uncertain ALU to propagate variances in hardware using the
uncertainty-aware instructions defined by the uncertain non-standard extension to RISC-V.

Table of contents

1 Introduction 1

2 Designing a Framework for Uncertainty 3

2.1 Design Criteria . 3

2.2 Prior Work . 4

2.3 Propagation of Uncertainty in Hardware . 5

2.4 Linear Uncertainty Propagation . 7

2.5 A RISC-V Extension for Approximate Floats . 8

2.6 Required Hardware Resources . 13

3 “Uncertain” Non Standard Extension for Approximate Floating-Point 15

3.1 Uncertain Register State . 15

3.2 Special memory . 17

3.3 Opcode Encoding . 18

3.4 Uncertain Control and Status Registers . 19

3.5 Uncertain Load and Store Instructions . 19

3.6 Uncertainty-Aware Computational Instructions 20

3.7 Uncertain Instructions . 20

3.8 Uncertain ABI . 22

4 Implementing the Uncertain Framework 25

4.1 Uncertainty in the Sunflower Simulator . 25

4.2 Implementing an Uncertain ALU . 26

4.3 Compiling Uncertainty-Aware C . 26

4.4 Library Abstractions for the Uncertain Extension 27

5 Results and Discussion 29

5.1 Evaluating Uncertain Assembly . 29

5.2 Accuracy of the Linear Uncertainty Propagation 32

5.3 Newton-Raphson Test . 37

5.4 The Uncorrelated Approximation . 38

6 Conclusions 41

References 43

Appendix A Risk Assessment Retrospective 45

Chapter 1

Introduction

Many computing algorithms operate on data derived from measurements or models of real word
phenomena. Due to uncertainty in measurements and inaccuracies of models, the output of such
algorithms are approximations of the true value. Algorithms may amplify errors in the inputs and
can cause errors to accumulate over time.

The floating-point representation defined by the IEEE 754-2008 arithmetic standard [11] stores
only the computer’s best guess of the true value without any information about possible errors.
This project proposes a new floating-point type that contains uncertainty information. This type is
implemented in hardware to minimise the performance cost of storing and propagating uncertainty.

An arithmetic logic unit (ALU) is a digital circuit in a processor that performs arithmetic operations.
A hardware implementation of an uncertainty-aware floating-point type requires an ALU capable
of propagating uncertain through arithmetic. An Instruction Set Architecture (ISA) defines the
interaction between hardware and software and this report proposes an extension to allow software
to use hardware support for uncertainty propagation. The RISC-V ISA is open source and designed
to “provide a basis for more specialized instruction-set extension” [17]. The uncertain framework
designed in this project is built upon the foundations provided by RISC-V.

This project makes the following contributions:

• The uncertain framework for uncertainty propagation in hardware.

• The uncertain non-standard extension to RISC-V ISA.

• The uncertain ALU.

• An implementation of the uncertain extension in the Sunflower Simulator [19].

• A method to generate instructions from the uncertain extension when compiling c code.

Chapter 2

Designing a Framework for Uncertainty

2.1 Design Criteria

The uncertain framework should satisfy the following criteria which are adapted from the RISC-V
XBitmanip extension proposal specification [22]:

1. Architectural Consistency: The uncertain extension must be consistent with RISC-V philoso-
phy. ISA changes should deviate as little as possible from existing RISC-V standards (such
as instruction encodings), and should not re-implement features that are already found in the
base specification or other extensions.

2. No Cost in Accuracy: The accuracy of the numerical results of this method should not be
worse than existing methods. Of particular importance is the accuracy of the best guess; its
value should be as close as possible to that obtained using standard floating-point instructions.
The accuracy of any estimates of the uncertainty are less important as rough estimates of
uncertainty still give useful information.

3. Execution speed: Hardware support will provide a significant reduction in execution time
compared to a software implementation of an approximate type. As few as possible additional
clock cycles should be required by uncertainty-aware instructions compared to standard
floating-point instructions.

4. Hardware Simplicity: Although accuracy and execution speed are the primary aims of the
uncertain extension, ideas that dramatically increase the hardware complexity and area, or are
difficult to implement, should be penalized and given extra scrutiny.

4

5. User friendly: The uncertain framework should enable programmers to create robust software
that can respond appropriately to uncertain input. Moreover, the work to change existing
software to use the uncertain framework should be minimal. The instructions added by
the uncertain extension should be compatible with standard instructions and the uncertain
application binary interface (ABI) should be compatible with the standard RISC-V ABI.

The wording above is purposely modelled on criteria used in the XBitmanip proposal [22] so that
the uncertain framework might inherit the precision of the RISC-V ISA.

2.2 Prior Work

The linear uncertainty propagation equations (defined in Section 2.4) have been analysed in de-
tail [20][1]. Literature has traditionally focused on uncertainty propagation as a tool for analysis of
experimental results rather than as a method suitable for computer implementation. More recently,
software libraries have begun to use these uncertainty propagation tools to provide solutions for
robust mathematical computing. Measurements.jl [6] is a Julia library which propagates uncertainty
through mathematical calculations using a new Measurement data type that represents an approx-
imate value. Measurements.jl uses the linear uncertainty propagation equations with a tagging
method to track correlation between Measurements. An independent Measurement (a Measurement
uncorrelated with all other Measurements) is given a unique tag. A derived Measurement (for
example the sum of two independent Measurements) stores the tag of each independent unit from
which it has been derived and the derived Measurement’s partial derivative with respect to each
independent Measurement. The library uses these tags and partial derivatives to correctly calculate
variances using the linear uncertainty propagation equations. However, storing and using these tags
reduces the performance of the library [5].

The Uncertain<T> library [2] and The NIST Uncertainty Machine [15], use a different approach for
propagating uncertainty based on a tree representation of arithmetic expressions and Monte Carlo
statistical methods. The Uncertain<T> library defines uncertain values that store an independent
or a derived approximate value. An independent uncertain value contains a sampling function
and its statistics (for example its mean or its variance) are estimated from samples generated
by the sampling function. A confidence interval is constructed for the statistic and samples are
generated until the desired value of the confidence interval (for example 95%) is achieved. A
derived value stores a reference to the uncertain values it depends on and a function that maps those
values to it. For example an uncertain value constructed from the sum of two uncertain values

5

contains a reference to those two values as well as the function f (x,y) = x+ y. Statistics of derived
uncertain values are estimated from samples in the same way as independent uncertain values. To
generate a sample from a derived uncertain value, the library first generates samples from each
independent value the derived value depends on and then combines those samples using the stored
function. These approaches are powerful because, by using Monte Carlo methods, they can model
arbitrary probability distributions. The performance of these methods depend on fast procedures for
generating samples for independent uncertain values.

Both Measurements.jl and Uncertain<T> abstract the calculations required for uncertainty propaga-
tion from the programmer. This abstraction simplifies development of uncertainty-aware software
and enables a programmer who is not an expert with uncertainty or probability to use these meth-
ods. Whilst these libraries approaches are well suited to software, neither can be directly used to
implement a framework with hardware support as they both rely on dynamic allocation of resources.
Moreover, both approaches can use an unbounded amount memory when representing an approx-
imate value. Uncertain<T> dynamically allocates memory to store the tree representation of an
uncertain value. As arithmetic operations are applied to create new uncertain values, larger trees
(requiring more memory) are created. Measurements.jl uses dynamic memory to store information
about correlation between Measurements; the amount of memory depends on the number of other
values a Measurement is correlated with. In software, the operating system will dynamically allocate
memory to libraries on demand but in hardware space is limited and must be specified during design.
It is therefore infeasible to use these methods directly in a hardware implementation of uncertainty
propagation.

2.3 Propagation of Uncertainty in Hardware

Approximate values are represented by a random variable with a known probability distribution. The
laws of probability allow uncertainty information to be propagated through arithmetic operations.
However, exactly representing an arbitrary continuous distribution is impossible so this framework
must use an approximation of the distribution instead. The uncertain ALU must be able to construct
this approximation of the distribution for the result of an arithmetic operation. Two approximations
are considered in detail: Monte Carlo samples and moments of a distribution.

6

Monte Carlo Methods

The Uncertain<T> approach [2] uses a variable number of samples and is thus unsuitable for
hardware. However, a probability distribution could instead be modelled by a fixed number of
samples. These samples build an estimation of the approximate value’s underlying distribution. To
propagate uncertainty, the ALU applies arithmetic operations piecewise to every sample yielding
an estimation of the distribution of the resulting approximate value. The mean, variance and other
statistical properties can be estimated using Monte Carlo methods. In particular the best guess of
an approximate value is given by the empirical average of sample values. An advantage of this
approach is that the memory and computational complexity are fixed by the hard-coded number
of samples. However, this approach does not satisfy the second design criteria: to construct the
samples that this approach requires, random numbers must be added to the measured or estimated
value. The best guess of approximate value (which is the mean of these generated samples) will
vary around the measured or estimated value due to the random numbers. Accurate best guesses of
approximate floats requires use of a large number of samples which is infeasible due to the fourth
design criteria.

Finally, it is possible that specialised hardware support for Monte Carlo based approximate values
may be made redundant by the RISC-V vector extension [18] currently under design. The main
operation requiring support from hardware is the parallel update of samples. These parallel
operations will be supported efficiently by the vector extension, support that — according to the
first design criteria — should not be reimplemented as part of this framework. It is not clear if other
hardware supported operations (for example a shuffle of samples) are needed and, if so, whether
the vector extension will support them. As the vector extension will, at least partially, provide the
hardware support needed for Monte Carlo methods, the scope for a specialised uncertain ALU is
reduced.

Moment Methods

Other designs use moments to approximate a distribution. The first moment, the mean, of a
distribution is the best guess of an approximate value and traditional computer arithmetic operations
effectively consider only this first moment. The variance is the second central moment of a
distribution, the skew is the third and the the kurtosis is the fourth. The description of the distribution
becomes more accurate as more moments are used. Using the best guess and the variance as
approximation of a distribution allows a compact binary representation whilst encoding information
about the distribution. The linear uncertainty propagation equations described in Section 2.4

7

approximate the variance of the result of an arithmetic function based on the first-order partial
derivatives of the function and the variances of the inputs. A uncertain ALU could use the linear
uncertainty propagation equations to estimate the best guess and variance of the result of an
arithmetic operation. The estimate of the best guess is simply the traditional floating-point result of
the operation and thus this design satisfies the second criteria. Difficulties with this approach arise
due to the covariance term in the linear uncertainty propagation equations.

Storing the covariance between all possible combinations of approximate values is required for
accurate uncertainty propagation but uses a large amount of hardware resources and complicates
implementation. To avoid requiring a computer to store these covariances, the uncertain ALU could
instead work with an upper bound on the variance (for example the bound given by Equation 2.6).
It may also be viable to assume the covariance to always be zero in the hope that errors are small or
cancel out.

Keeping track of the correlation between values increases accuracy at the cost of significant
computational complexity. If the total number of approximate values in the system is N then
N(N−1)/2 covariances must be stored to correctly account for correlation between values. Using
these correlations, the variance of the result of a binary function can be accurately computed,
notwithstanding the approximations of the linear uncertainty propagation equation. The significance
of the error introduced by bounding or ignoring covariances will be analysed in Section 5.4. The
following sections lay out a framework and describes a possible hardware implementation for a
moment method using covariance information.

2.4 Linear Uncertainty Propagation

The uncertain framework uses the linear uncertainty propagation equations [20] to calculate variance.
For an approximate value defined z = f (x,y) where x = x±σx and y = y±σy, the linear uncertainty
propagation equations estimate the best guess and the variance of z.

z = f (x,y) (2.1)

σ
2
z =

(
∂ f
∂x

σx

)2

+2
∂ f
∂x

∂ f
∂y

σxy +

(
∂ f
∂y

σy

)2

(2.2)

8

where all derivatives of f are evaluated at x = x and y = y. The covariance between z and x or y is

σzx =
∂ f
∂x

σ
2
x +

∂ f
∂y

σxy (2.3)

σzy =
∂ f
∂x

σxy +
∂ f
∂y

σ
2
y . (2.4)

The covariance of z with another approximate value u = u±σu is

σzu =
∂ f
∂x

σxu +
∂ f
∂y

σyu. (2.5)

Because |σxy| ≤ σxσy [13], the standard deviation of z must obey

σz ≤
∣∣∣∣∂ f
∂x

∣∣∣∣σx +

∣∣∣∣∂ f
∂y

∣∣∣∣σy. (2.6)

This upper bound for the variance of the output of a binary function can be calculated when the
covariance between the inputs is unknown.

The approximate float consists of a best guess and a variance estimate stored using a floating-point
representation. Equation 2.2 implies that calculation of the variance of the result of an arithmetic
operation requires the covariance between all possible inputs to be stored.

An approximate float can have unknown uncertainty, in which case its variance and covariances
are NaN. The standard rules for propagation of NaN values through floating-point operations (as
described by the section 6.2.3 of the IEEE 754-2008 arithmetic standard [11]) ensure arithmetic
applied to values with unknown uncertainty produces results with unknown uncertainty.

2.5 A RISC-V Extension for Approximate Floats

In this project, the uncertain framework will be implemented as a non standard extension to RISC-V,
an open source ISA developed at UC Berkeley [17]. To do so, four things are required: a way to
store the variance and covariances in hardware; a new ALU capable of applying Equations 2.1–2.5
to the stored uncertainty information; instructions that allow programmers to use the new ALU; and
an ABI which allows approximate floats to be passed to and returned from procedures.

9

Special Memory

In the same way that traditional floats are stored in memory and can be loaded into registers when
they are needed in computations, the uncertain extension will allow approximate floats to be stored
in memory.

Registers will contain NR = 8 approximate floats and up to NM approximates floats can be stored
in memory. The uncertain memory size NM specifies the maximum number of unique uncertain
memory locations available in memory — it is not equal to, nor does it scale linearly with, the
number of bytes needed to physically provide this memory. General memory is not suitable for
storing the uncertainty information associated with approximate floats as the correlations between
values requires storing all the floats contiguously in memory. Additionally, the nature of Equations
2.1 and 2.2 necessitates a much tighter coupling between the processor and the uncertain memory
than between the processor and general memory.

Consider the case where x, y and z represent approximate floats contained in registers and u

represents an approximate float stored in memory. The uncertainty information about u consists
of the variance of u and any covariance involving u. The uncertain ALU does not use uncertainty
information about u to calculate either the best guess or the variance of z Neither is uncertainty
information about u used to calculate the covariance of z with x (Equation 2.3), z with y (Equation
2.4), or z with any other approximate float contained in registers. However, the covariance between z

and u does depend on uncertainty information about u as shown by Equation 2.5. Should u be loaded
into a register, the ALU would require the covariance between z and u. Thus, the uncertain ALU
must calculate σzu despite u being stored in memory. The ALU requires access to all covariances
between approximate floats in registers and approximate floats in memory.

Registers are required for NR variances, one for each approximate float. There are NR(NR−
1)/2 register-register covariances between pairs approximate floats both contained in registers.
There are NRNM register-memory covariances between approximate floats contained in registers
and approximate floats stored in memory. All register-register and register-memory covariances
(NR(2NM +NR−1)/2 in total) must be available to the uncertain ALU; they must be contained in
registers. In memory, there is space to store the variance of up to NM approximate floats. There are
NM(NM−1)/2 memory-memory covariances between pairs approximate floats in memory. As the
uncertain ALU will not change their value, memory-memory covariances are stored in memory. The
number of covariances stored in hardware increases linearly with the size of the uncertain memory.
Therefore, the amount of uncertain memory available is necessarily small.

10

⬛ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⬛ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⬛

⬛ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⬛ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⬛ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⬛ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

⬛ ⚫ ⚫ ⚫ ⚫ ⚫

⬛ ⚫ ⚫ ⚫ ⚫ ⚫

⬛ ⚫ ⚫ ⚫

⬛ ⚫ ⚫

⬛ ⚫

⬛

Variance

Register-register

covariance

Register-memory

covariance

Memory-memory

covariance

𝑁𝑀

𝑁𝑀

𝑁𝑅

𝑁𝑅

Stored in

registers

Stored in

memory

Fig. 2.1 Uncertainty information is stored in registers and in memory. In this example, NR = 4 and
NM = 8.

Figure 2.1 shows all the uncertainty information in the system partitioned into registers and memory.
Memory-memory covariances make up part of the uncertainty information for two approximate
floats. The requirement for contiguous memory stems from sharing this uncertainty information.

Uncertain Arithmetic Logic Unit

A processor requires an uncertain ALU to support this ISA extension. The ALU uses Equation 3.2
to update one variance, NR−1 register-register covariances and NM register-memory covariances.
In hardware, these updates can be performed in parallel providing a concrete benefit of a hardware
implementation over an approximate float software library.

New Uncertainty-Aware Instructions

Software requires instructions to set, retrieve and propagate uncertainty information. The author
considered using existing floating-point instructions to manage uncertainty. Uncertainty-aware load
and store instructions require extra information compared to the standard load and store instructions
as they must manage both the best guess and the variance. Therefore, existing floating-point load

11

Table 2.1 Uncertain instructions allowing access to uncertain information.

UNGCOV.S Get covariance between two approximate floats.

UNSVAR.S Set variance of an approximate floats.

UNCLVAR.S Clear the variance of an approximate float.

UNUPG.S Update the uncertainty information of an approximate float
using a gradient.

and store instructions are not suitable and, as described in Section 3.5, the uncertain extension adds
new instructions for uncertainty-aware load and store operations.

For floating-point computational instructions, propagating uncertainty may require additional energy
or increase the execution time of the instruction. If a program chooses not to use the uncertain
extension, it should not pay this cost. Additionally, software may wish to specify a different rounding
mode for uncertainty calculations, for example rounding towards infinity for a conservative variance
estimate. Separate uncertainty-aware computational instructions would permit a different round
mode for the best guess and the variance. Finally, changing the behaviour of existing instructions
breaks the stability guarantees given by the RISC-V foundation when they froze the ISA. Therefore,
the uncertain extension adds new computational instructions, defined in Section 3.6, that behave
in a similar way to standard computational instructions but also propagate uncertainty. Software
can use four new instructions listed in Table 2.1 to set and retrieve uncertainty information. These
instructions are defined fully in Section 3.7.

Uncertain ABI

The uncertain extension needs an ABI to allow linking of external libraries for uncertainty-aware
calculation. The uncertain ABI is based on the RISC-V ELF psABI [16] and is defined in 3.8.
To satisfy the fifth design criteria this ABI must be compatible with the standard ABI so that
programmers can use standard libraries without needing to recompile.

Interactions with Standard Floating-Point Instructions

Support for the non-standard uncertain RISC-V extension builds on the base single-precision
instruction subset F. Therefore, one must consider the behaviour of intermixed standard single-
precision floating-point instructions and uncertainty-aware floating-point values.

12

Defining this relationship would not be necessary if the behaviour of standard floating-point
instructions were adapted to propagate uncertainty. However, the downsides of this approach
described above outweigh this benefit.

A defensive option is to specify that any non floating-point operations produce output with unknown
uncertainty (see Section 2.4). This approach, accidental usage of standard floating-point instructions
in place of uncertainty-aware instructions would lead to software reading a NaN variance. It would
be straightforward to detect something was awry and hopefully possible to pinpoint the source of the
error by tracing back to the first occurrence of a NaN variance. One facet of the ABI compatibility
is that procedures that use uncertainty-aware instructions can call procedures that do not. Standard
RISC-V procedures must preserve the values in the registers fs0–fs11 across procedure calls.
However, procedures as procedures will preserve the values by storing to and loading from the
stack using FSW and FLW, they will not preserve any uncertainty information associated with
the registers fs0–fs1. (The registers fs2–fs11 are not paired and so can not have any associated
uncertainty information.) Therefore, to allow ABI compatibility the uncertain extension would
have to declare that fs0 and fs1 are no longer callee saved. This is an undesirable and confusing
behaviour and so alternative interactions between uncertainty-ware and standard floating-point
instructions were sought.

A simple option is to specify that standard floating-point instructions leave uncertainty information
untouched. As a concrete example using instructions from Table 2.1, the sequence of instructions

UNSVAR.s fa2 , fa0
FMV.s fa2 , fa1
UNGCOV.s fa3 , fa2

would copy the (possibly rounded) value of fa0 to fa3 and copy the value of fa1 to fa2. This
approach may lead to hard to detect errors where uncertainty information is not updated due to
standard instructions being erroneously used in place of uncertainty-aware instructions. The author
hopes that static checking tools may be able to help detect these errors and this would not be
a problem for compiler generated code which makes up the vast majority of executables. No
matter what instructions a RISC-V procedure executes, provided there are no uncertainty-aware
instructions, the uncertainty information for all registers will remain unchanged. If a programmer
wishes to use uncertain instructions then they can simply preserve the uncertainty information using
the UNFSW and UNFLW instructions. Callee saved registers and ABI compatibility can both be
achieved at the cost of potentially hard to detect errors. The author believes this is a worthwhile
compromise.

13

1 2 4 8 16 32
100

101

102

103

Fig. 2.2 The number of variances and register-register covariances required for a given number of
uncertain registers NR. This figure uses a logarithmic scale.

2.6 Required Hardware Resources

The author believes that the scaling of hardware resources required to implement the uncertain
extension will be close to the scaling in the number of values contained in the processor. Therefore,
as proxy for the required hardware resources, this section considers the number of values that must
be contained within the processor. In future work, more accurate estimates of the required hardware
resources may be calculated using a synthesisable RTL design of the uncertain extension.

The uncertain extension requires three categories of value to be contained in the processor: variances,
register-register covariances and register-memory covariances. The number of values from each
category contained within the processor are defined in 2.5. Figure 2.2 shows how the number of
variance and register-register covariances depends on the number of uncertain registers. Figure 2.3
shows how the number of register-memory covariances depends on the number of uncertain registers
and memory locations vary. The quadratic scaling of the number of register-register covariances
with uncertain registers favours a small number of uncertain registers. The ratio of the maximum
total number of approximate floats in the uncertain framework to the number of values contained
in registers (2(NR +NM)/(NR(2NM +NR + 1) is maximised by storing all approximate floats in
memory. For a usable uncertain extension, some uncertain registers are required but efficient
hardware usage favours a minimum number of uncertain registers. The “C” Standard Extension for
Compressed Instructions [17] provides precedence for using 8 registers f8–fa15.

14

Fig. 2.3 The number register-memory covariances required for a given number of uncertain registers
NR and memory locations NM. This figure uses a logarithmic scale.

Having chosen to use 8 uncertain registers, the author picked an uncertain memory size of 1024.
1024 uncertain memory locations requires 8192 register-register covariances contained within the
processor.

The uncertain ALU also requires additional hardware resources compared to a standard floating-
point ALU. To calculate a variance using Equation 2.2, the ALU must compute nine multiplications
(three for each term in the equation) and two additions. To calculate each covariance (for example
the covariance between z and x using Equation 2.3), the uncertain ALU must compute four multipli-
cations (two for each term in the equation) and one addition. As NR−1 register-register covariances
and NM register-memory covariances must be computed for every floating point operation, a large
number of hardware resources are required to fully parallelise these covariances updates. As
described by the second design criteria, highly accurate estimates of variances and covariances are
not of first importance. Therefore, there is potential to use lower precision binary representations
of covariance that would reduce the hardware resources required for propagation. Additionally,
imprecise hardware has been shown to lower the hardware resources required for a floating-point
ALU by allowing some loss of accuracy [3]. Such techniques may be useful to further reduce the
hardware resources required by an uncertain ALU.

Chapter 3

“Uncertain” Non Standard Extension for
Approximate Floating-Point

This chapter proposes the uncertain non-standard extension to version 2.2 of the RISC-V ISA
manual [17]. The style of writing in this chapter is intended to match RISC-V ISA manual and
inspiration has been taken from the proposed bit manipulation [22] and vector [18] extension
specifications. This chapter forms a self contained document although it may be best understood in
conjunction with the base RISC-V ISA manual. The uncertain non-standard extension depends on
the base single-precision instruction subset F.

As in the RISC-V ISA manual, commentary on design decisions is formatted as in this paragraph,

and can be skipped if the reader is only interested in the specification itself.

3.1 Uncertain Register State

The uncertain extension adds 8 uncertain registers u8–u15. These registers are paired with the
floating-point registers f8–f15. We describe the floating-point registers f8–f15 as paired registers
which, together with uncertain registers u8–u15 constitute the uncertain register file. We describe
the remaining 24 floating-point registers as unpaired. A paired floating-point register contains the
best guess, or nominal value, of an approximate float whilst the corresponding uncertain register
contains that float’s variance. Figure 3.1 shows this additional state.

The uncertain extension uses the linear uncertainty propagation equations to calculate uncertainty
information [20]. Consider an uncertainty-aware instruction that writes the result of the function

16

Variances Register-Register Covariances
u8
u9 cv
u10 cv cv
u11 cv cv cv
u12 cv cv cv cv
u13 cv cv cv cv cv
u14 cv cv cv cv cv cv
u15 cv cv cv cv cv cv cv

u9 u10 u11 u12 u13 u14 u15
31 0

uncsr
unsp

32

Fig. 3.1 Uncertain extension additional register state. There is one covariance between each unique
pair of uncertain registers.

f (x,y) to rd where x = rs1 and y = rs2. rs1, rs2 and rd are all paired floating-point registers. The
best guess rd and variance σ [rd, rd] of the approximate float contained by rd will have the new
values

rd← f
(
rs1, rs2

)
(3.1)

σ [rd, rd]←
(

∂ f
∂x

)2

σ [rs1, rs1]+2
∂ f
∂x

∂ f
∂y

σ [rs1, rs2]+
(

∂ f
∂y

)2

σ [rs2, rs2] (3.2)

where σ [rs1, rs2] is the covariance between rs1 and rs2 and the partial derivatives of f are evaluated
at x = rs1 and y = rs2.

To correctly propagate uncertainty, Equation 3.2 requires the covariance between rs1 and rs2.
Therefore, the uncertain extension adds 28 additional registers to contain the covariance between
each of the 8 approximate floats contained within paired registers. We call the covariance between
two approximate floats contained within the uncertain register file the register-register covariance.
This is the first of three classes of covariances used by the uncertain extension which are outlined
in Table 3.1. When updating the best guess and variance of rd, the register-register covariance
σ [rd, fx] must also be updated. We have

σ [rd, fx]← ∂ f
∂x

σ [rs1, fx] +
∂ f
∂y

σ [rs2, fx] (3.3)

for all paired registers fx ̸= rd. (The partial derivatives of f are evaluated at x = rs1 and y = rs2.)

The number of register-register covariances grows quadratically with the number of approximate

17

Table 3.1 Covariances that make up the uncertain extension can be classified as one of three types.

Covariance type
Written by computational
instructions?

Usage

Register-register Yes
Used to calculate the variance of arithmetic opera-
tions.

Register-memory Yes
Will become register-registers covariances if the
memory location they refer to is loaded by UN-
FLW.

Memory-memory No
Will be copied into register-covariances if one of
the memory locations they refer to is loaded by
UNFLW.

values stored in registers. To limit the cost of implementation we limit the number of uncertain

registers to 8 which we believe is sufficient for most use cases.

A floating-point register that is not paired with an uncertain register stores no information

about the uncertainty and therefore operations that retrieve uncertainty will return NaN if

applied to these unpaired registers.

3.2 Special memory

The uncertain non-standard extension adds uncertain memory used to store uncertainty information.
This memory can store uncertainty information about up to UNMSIZE=1024 approximate floats.

When loading an approximate float from uncertain memory with UNFLW, the best guess, the
variance, and the covariance between the loaded value and each of the 7 other approximate floats
currently contained within registers must be copied from memory. In the uncertain RISC-V
architecture, we call the covariance between any approximate float in a register and any approximate
float stored in memory a register-memory covariance. A register-memory covariance is the second
of the classes of covariance listed in Table 3.1. When the ALU updates a register it must also update
the register-memory covariances. As a register-memory covariance can be updated by uncertain
arithmetic logic unit (ALU) it must be stored within the processor.

All register-memory covariances must be contained in registers. There are 8×UNMSIZE

register-memory covariances and they are not exposed to software.

18

The final class of covariance is memory-memory covariance – covariances between two approximate
floats that are both stored in uncertain memory. The uncertain ALU will not change the value of
these covariances and so they can be stored in memory.

As register-memory covariances are constrained to be stored in registers, the maximum size of the
uncertain memory, UNMSIZE, must be small and specified by this ISA. We tentatively propose a
value of 1024 requiring 8192 register-memory covariances.

Updating every register-memory covariance involving rd as part of each uncertainty-aware

floating-point operation is a potential bottleneck for the implementation of an uncertain ALU.

However, these register-memory covariances only need to be read in two cases:

• When loading uncertainty information from uncertain memory.

• When updating other register-memory covariances.

There is potential, therefore, for micro-architectural optimisations to exploit the restricted set of

situations where a register-memory covariances is read.

3.3 Opcode Encoding

This extension proposes a mixture of 32 bit and 64 bit instructions. The 32 bit instructions use
brownfield encodings and fit around the standard instructions with the OP-FP major opcode. The
64-bit instructions use greenfield encodings and consist of 32 bits prepended to a standard instruction
RISC-V floating-point instruction.

Green and brownfield encodings are defined in Chapter 21 of the RISC-V ISA Manual [17].

The hope is that this format will be simple to decode; processors designed to process 32 bit
instructions can treat a 64 bit uncertainty-aware instruction as two 32 bit instructions and introduce
some extra micro-architectural state. The processor will update the uncertainty information when
evaluating a floating-point instruction if and only if the previous instruction evaluated by the
processor was the first part of an uncertainty-aware instruction. Figure 3.2 shows the proposed
encodings for the instructions defined in this document.

The implementation of this extension in the Sunflower Simulator [19] used this approach to

allow a system designed for 32 bit instructions to decode and evaluate the 64 bit uncertainty-

aware instructions. We chose to not attempt the optimise these opcodes for code size, instead

aiming for simplicity. Later iterations of this proposal may choose to redesign the opcode

encoding to achieve higher code density.

19

3.4 Uncertain Control and Status Registers

The Uncertain extension adds two control and status registers (CSRs). The first, uncsr, is a 32-
bit read/write register that holds the accrued exception flags. The second, unsp, is a XLEN bit
read/write register that stores the current uncertain stack pointer described in Section 3.8.

Time constraints did not permit either an implementation in the Sunflower Simulator [19] or a

full evaluation of these CSRs. Consequently this section is little more than a stub to be expanded

upon in future work.

3.5 Uncertain Load and Store Instructions

UNFLW and UNFSW load and store approximates float to and from memory. These instructions
use a similar addressing mode as the standard ISA, the best guess loaded from or stored to the
address in register rs1’ with a 12-bit signed offset. The uncertainty is loaded from and stored to
uncertain memory at the index in register rs1 with another 12-bit signed offset. Each address in
uncertain memory contains uncertainty information about a different approximate float.

UNFLW and UNFSW are both 64 bits in length. The lower 32 bits (those fetched first from little
endian memory) of each instruction have an I-type encoding and contain the register specifier rs1

and offset which together address uncertain memory. The upper 32 bits of UNFLW are exactly those
of FLW with the register rs1’ specifier and offset’ encoded as in the I format if one starts counting
from the 32 bit. The rs1’ specifier and offset’ together specify the address of a single precision float
to load as the best guess of rd. The upper 32 bits of UNFLW are exactly those of FSW with the
register rs1’ specifier and offset’ encoded as in the S format if one starts counting from the 32 bit.
The rs1’ specifier and offset’ together specify an address to which the best guess of rs2 should be
stored as single precision float. The binary format of UNFLW and UNFSW is shown in Figure 3.2.

These new instructions have the following assembly mnemonics:

unflw rd, offset'(rs1'), offset(rs1)

unfsw rs2, offset'(rs1'), offset(rs1)

We designed the uncertain instruction formats to be as similar as possible to the standard

20

instructions. In particular, all register specifiers are either in the same place as standard

instructions or are shifted 32 bits left.

3.6 Uncertainty-Aware Computational Instructions

There are 10 uncertainty-aware floating-point computational instructions: UNFADD.S, UNFSUB.S,
UNFMUL.S, UNFDIV.S, UNFSGNJ.S, UNFSQRT.S, UNFSGNJN.S, UNFSGNJX.S, UNFMIN.S
and UNFMAX.S. These instructions are 64 bits long and, with the exception of the funct3 field
which is used to set the rounding mode, have identical lower 32 bits. The upper 32 bits of each in-
struction are exactly the bits of the corresponding uncertainty unaware floating-point computational
instruction.

Adding uncertainty-aware fused multiply add instructions is out of scope for this work but a

desirable addition to the ISA extension.

The rounding mode defined in bits 12 to 14 controls the rounding used when propagating uncertainty.
This rounding mode must be statically set. Bits 44 to 46 define the rounding mode used to compute
the best guess of the result and can be set to use the dynamic rounding mode.

We refer the reader to section 8.2 of the RISC-V ISA Manual [17] for a discussion on rounding

modes for floating-point operations.

If the destination register is not a paired register, an uncertainty-aware computational instruction
will behave identically to the corresponding standard floating-point instruction. If one of the source
registers is not a paired register, uncertainty-aware computational instructions will write NaN to the
variance of the destination register (if it is a paired register).

3.7 Uncertain Instructions

The uncertain extension adds four new 32 bit long instructions. UNGCOV.S calculates the covariance
between rs1 and rs2 and writes the result to rd. If the uncertainty of either rs1 or rs2 is unknown
then NaN will be written to rd. Note, UNGCOV.s rd, rs1, rs1 writes the variance of rs1 to rd.
UNSVAR.S sets the variance of rd to the value contained by the floating-point register rs1 and the
covariance between rd and every other approximate float is set to zero. This ISA extension only

21

allows software to initialise independent approximate floats. UNCLVAR.S sets the variance of rd to
zero (indicating the value contained in rd is exact). Both UNSVAR.S and UNCLVAR.S are no-ops
if rd is not a paired register.

The covariance matrix of a vector of random variables must be positive semi-definite. We do

not allow software to set covariances directly as doing so could violate this constraint leading

to mathematically inconsistent results. No elegant method for specifying arbitrary covariances

whilst ensuring validity of the matrix has yet been devised and so such functionality has been

left out of this ISA extension.

UNUPG.S updates the variance and every covariances involving rd as if the approximate float had
been updated by a function with the gradient of the value contained by the floating-point register
rs2 applied to rs1. This is a no-op if rd is not a paired register and, if rs1 is not a paired register,
UNUPG.S will write NaN to the variance of rd. This instruction allows efficient implementation of
mathematical functions with known gradient. For example, the following assembly code stores the
arcsine of fa0 in fa0.

Store fa0 in fs0 and asin(fa0) in fa0

unfmv.s fs0 , fa0.

call asinf

Calculate d(asin(x))/dx = 1/sqrt(1 - x^2) and store in fa4.

li a0, 1

fcvt.s.w fa3 , a0

fmul.s fa4 , fs0 , fs0

fsub.s fa4 , fa3 , fa4

fsqrt.s fa4 , fa4

fdiv.s fa4 , fa3 , fa4

Set the uncertainty information by applying the linear

uncertainty propagation equations to x.

unupg.s fa0 , fs0 , fa4

22

Table 3.2 Uncertain Register Convention.

Register ABI Name
Paired floating-
point register

Description
Preserved
across calls

u8–9 us0–1 fs0–1 Saved registers Yes

u10–11 ua0–1 fa0–1 Arguments/return values No

u12–15 ua2–5 fa2–5 Arguments No

3.8 Uncertain ABI

The uncertain ABI defines a calling convention for procedure that use approximate floats. Table
3.2 shows the uncertain register convention which is based on the eight registers used by RISC-V
compressed instructions. The uncertain procedure calling convention adds six uncertainty argument
registers, the first two of which are also used to return values. The best guess of an approximate
float argument is passed as if it were a scalar float — either in a floating-point register or on the
stack. The corresponding uncertainty information is passed in an uncertain argument register if
available, otherwise it is passed on the uncertain stack instead. Approximate floats are returned
in the same manner as a first named argument of the same type would be passed. The uncertainty
information associated with registers fs0–fs11 shall be preserved across procedure calls.

This ABI is adapted from and we hope captures the intent of the RISC-V ELF psABI specifica-

tion [16].

As the uncertain memory is organised separately from general purpose memory, the uncertain ABI
introduces a separate uncertain stack. For ABI compatibility, the stack pointer for the uncertain
stack is not stored in the integer registers which all have specific purposes in the standard ABI.
Therefore, the uncertainty row stack pointer will be stored in an available control and status register
(CSR).

Existing procedures adhering to the standard RISC-V hardware floating-point calling conven-
tion [16] are compatible with the uncertain ABI. Standard RISC-V procedures automatically
preserve the uncertainty information of saved registers as they do not use uncertainty-aware instruc-
tions.

|---:---|
| 6 5 4 : 3 2 1 |
|3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2:1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0|
|---:---|
| 3 2 1 : 3 2 1 |
|1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0:1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0|
|---:---|
| : funct7 | rs2 | rs1 | f3 | rd | opcode | R-type
| imm[11:0] | rs1' | f3' | rd | opcode' : imm[11:0] | rs1 | f3 | opcode | 64 bit | UI-type
| imm[11:5] | rs2 | rs1' | f3' | rd | opcode' : imm[11:0] | rs1 | f3 | opcode | 64 bit | US-type
| funct7 | rs2 | rs1 | f3' | rd | opcode' : zero | zero | zero | f3 | opcode | 64 bit | UR-type
|===:===|
| : 0011100 | rs2 | rs1 | rm | rd | 1010011 | UNUPG.S
| : 0111100 | rs2 | rs1 | rm | rd | 1010011 | UNGCOV.S
| : 1011100 | 00000 | rs1 | rm | rd | 1010011 | UNSVAR.S
| : 1011100 | 00010 | 00000 | 000 | rd | 1010011 | UNCLVAR.S
| : |
| imm[11:0]' | rs1' | 010 | rd | 0000111 : imm[11:0] | rs1 | 111 | 00001 | 0111111 | UNFLW
| imm[11:5]' | rs2 | rs1' | 010 |imm[4:0]'| 0100111 : imm[11:0] | rs1 | 111 | 00001 | 0110011 | UNFSW
| : |
| 0000000 | rs2 | rs1 | rm' | rd | 1010011 : 0000000 | 00000 | 00000 | rm | 00001 | 0110011 | UNFADD.S
| 0000100 | rs2 | rs1 | rm' | rd | 1010011 : 0000000 | 00000 | 00000 | rm | 00001 | 0110011 | UNFSUB.S
| 0001000 | rs2 | rs1 | rm' | rd | 1010011 : 0000000 | 00000 | 00000 | rm | 00001 | 0110011 | UNFMUL.S
| 0001100 | rs2 | rs1 | rm' | rd | 1010011 : 0000000 | 00000 | 00000 | rm | 00001 | 0110011 | UNFDIV.S
| 0010000 | rs2 | rs1 | 000 | rd | 1010011 : 0000000 | 00000 | 00000 | 000 | 00001 | 0110011 | UNFSGNJ.S
| 0101100 | 00000 | rs1 | rm' | rd | 1010011 : 0000000 | 00000 | 00000 | rm | 00001 | 0110011 | UNFSQRT.S
| 0010000 | rs2 | rs1 | 001 | rd | 1010011 : 0000000 | 00000 | 00000 | 000 | 00001 | 0110011 | UNFSGNJN.S
| 0010000 | rs2 | rs1 | 010 | rd | 1010011 : 0000000 | 00000 | 00000 | 000 | 00001 | 0110011 | UNFSGNJX.S
| 0010100 | rs2 | rs1 | 000 | rd | 1010011 : 0000000 | 00000 | 00000 | rm | 00001 | 0110011 | UNFMIN.S
| 0010100 | rs2 | rs1 | 001 | rd | 1010011 : 0000000 | 00000 | 00000 | rm | 00001 | 0110011 | UNFMAX.S
|---:---|

Fig. 3.2 Uncertain instruction opcode listing. This table’s formatting is based on the opcode listings in the XBitmanip extension specification [22].

Chapter 4

Implementing the Uncertain Framework

4.1 Uncertainty in the Sunflower Simulator

To evaluate and test the uncertain framework, the author extended the Sunflower Simulator [19],
a “Full-System Hardware Emulator and Physical System Simulator for Sensor-Driven Systems”.
This modification to the Sunflower Simulator includes a software implementation of an uncertain
ALU. The Sunflower Simulator supports the RISC-V ISA due to work by Zhengyang Gu [9] and
supports the floating-point standard extension due to work by Ryan Voo [21], who both contributed
to sunflower as part of coursework projects. The author built upon the existing RISC-V support
in the Sunflower Simulator, adding uncertain memory and the ability to decode and evaluate the
instructions defined by the uncertain extension.

The work for this project, as it was proposed, included the design of a hardware implementation
of the uncertain framework to evaluate feasibility and to measure the required hardware resources.
However, the author instead focused the project on the uncertain framework and the design of the
uncertain extension. The author believes that the quality of any hardware implementation depends
on the framework underlying it and so focused on the design of the uncertain framework and the
corresponding RISC-V extension. They hope that this project will provide a foundation for future
work that will include hardware designs.

26

4.2 Implementing an Uncertain ALU

At the core of an implementation of the uncertain extension is the uncertain ALU. For the Sun-
flower Simulator, the uncertain ALU was written using the C programming language and single
precision floating-point arithmetic. Whereas a hardware implementation of the uncertain ALU
could parallelise the covariance updates required by linear uncertainty propagation equations, the
C implementation loops over each approximate register and memory location and calculates the
new covariance between each pair of approximate floats. This uncertain ALU supports all the
uncertainty-aware instructions defined by the uncertain RISC-V extension.

4.3 Compiling Uncertainty-Aware C

Writing assembly code is a slow, laborious and error prone process. To demonstrate the potential of
the uncertain framework, this project sought to provide access to the framework from the higher
level programming language C. The author considered adapting the GNU compiler, called gcc, to
support generation of uncertain instructions. Due to the size and complexity of gcc (over 10 million
lines of code [14]), making modification to the source code would have been a large undertaking.
New uncertainty-aware instructions are designed to be similar to standard floating-point instructions,
primarily to simplify decoding. By exploiting these similarities, it proved possible to build a proof
of concept method to compile uncertain-aware C without modifying the C compiler. A simpler —
though still complex — program, the GNU assembler gas [7], converts assembly into machine
code. The author was able to modify gas to assemble the new uncertainty-aware instructions.
Uncertainty-aware C is compiled to uncertain instructions in the following stages:

1. C is compiled into standard RISC-V assembly using the command line flag -fverbose-asm.

2. A python script converts floating-point instructions in the generated assembly into uncertainty-
aware instructions.

3. The uncertain assembly is assembled by the modified version of gas.

The generated machine code contains uncertain instructions can be run by the Sunflower Simulator.

Floating-point computational assembly instructions are straightforward to convert; the script
prepends the prefix ‘un’ to the mnemonic and the rest of the instruction is left unchanged. For exam-
ple, the script converts the assembly fadd.s fa0, fa0, fa1 into unfadd.s fa0, fa0, fa1.

27

Conversion of uncertain load and store instructions is more complicated as the script must infer
the correct uncertain memory address to store to or load from. An uncertainty-aware compiler
would generate UNFSW and UNFLW instructions with uncertain memory addresses relative to
the uncertain stack pointer in the same way that a standard C RISC-V compiler generates FSW
and FLW instructions with memory addresses relative to the standard stack pointer. When post-
processing generated instructions, there is not enough information available to manage an uncertain
stack. Instead, when the script encounters a standard load or store instruction, it reads the memory
address used and replaces the standard instruction by an uncertain instruction which uses the same
memory address for both the best guess and the variance of the approximate float. For example, the
script converts the assembly fsw fa0, 4(sp) into unfsw fa0, 4(sp), 4(sp). This method is
made possible by the uncertain implementation in the Sunflower Simulator providing one uncertain
memory location for every four bytes of available standard memory. Thus for every unique memory
address of an aligned floating-point store there is a unique index in uncertain memory. The program
can be guaranteed to use only aligned memory addresses by invoking gcc with the command line
flag -mstrict-align. Uncertain memory is incredibly costly to provide as described in Section 2.6.
In an uncertain framework that is realisable in hardware, the number of uncertain memory location
must be far smaller than the number of normal memory addresses. For a simulator implementation
demonstrating a proof of concept, the drawbacks of this wasteful use of uncertain memory are
outweighed by the simplification it provides.

4.4 Library Abstractions for the Uncertain Extension

To provide access to uncertainty information in C, the uncertain library defines a high level interface
to uncertain instructions. This library contains the functionality needed to build the test cases used
in Section 5.3. An uncertainty-aware compiler could remove the function call overhead associated
with these abstractions by defining the functions exposed by this library as compiler builtins [8].

The uncertain library defines a new arithmetic type approximate_float. The library should
define this type in such a way that it cannot implicitly be converted into a float. However, defining
approximate_float in such a way would prevent the C arithmetic operators from working with
approximate floats. Instead, the library defines approximate_float through a typedef, allowing
users to interchange float and approximate_float. This is not desired behaviour, instead
programmers should use the function unf_best_guess(), defined as part of the uncertain library,
to retrieve the best guess of an approximate float. Compiler support for the uncertain extension is
needed to define an approximate_float type that are distinct from the standard C float type but

28

compatible with the arithmetic operators. For the test cases, the author was careful to avoid any
implicit conversions.

Chapter 5

Results and Discussion

5.1 Evaluating Uncertain Assembly

This section demonstrates how an uncertain RISC-V assembly snippet that adds and multiplies
paired floating-point registers (using the UNFADD.S and UNFMUL.S instructions) is evaluated
by a processor implementing the uncertain RISC-V extension. The assembly is divided into five
chunks and to the right of each chunk is the register state after the processor has evaluated that
chunk. Figure 5.1 shows how the state is represented. Registers shown with a bold outline have
been updated whilst evaluating a snippet.

fa0 fa1 fa2

fa0 fa1 fa2

σ [fa0]2 σ [fa0,fa1] σ [fa0,fa2]

σ [fa1]2 σ [fa1,fa2]

σ [fa2]2

Best guess

Covariance

Variance

Fig. 5.1 Diagrammatic representation of the register state.

30

The assembly begins with four standard RISC-V instructions that load the floating-point value 3.0
into ft0 and the floating-point value of 4.0 into ft1. As the registers ft0 and ft1 do not have any
associated uncertainty information, nor will the floating-point values in these registers change, they
are not shown in the diagram. At the start of this snippet, the registers fa0, fa1 and fa2 contain an
undefined initial value which is represented using a question mark.

.cthree:

.word 0x40400000

.cfour:

.word 0x40800000

example:

lui a5, %hi(.cthree)

flw ft0, %lo(.cthree)(a5)

lui a5, %hi(.cfour)

flw ft1, %lo(.cfour)(a5)

fa0 fa1 fa2

? ? ?

? ? ?

? ?

?

The programmer uses ft0 and ft1 to define the uncertainty information of fa0. They use the stan-
dard RISC-V FMV.S pseudo instruction to set the best guess of fa0 and the uncertain UNSVAR.S
instruction to set the variance. When executing the UNSVAR.S instruction, the uncertain ALU sets
the covariance between fa1 and all other paired registers to zero.

fmv.s fa0, ft1

unsvar.s fa0, ft0

fa0 fa1 fa2

4.0 ? ?

3.0 0.0 0.0

? ?

?

Next, the programmer uses the UNSVAR.S instruction again to set the variance of fa1.

31

fmv.s fa1, ft0

unsvar.s fa1, ft1

fa0 fa1 fa2

4.0 3.0 ?

3.0 0.0 0.0

4.0 0.0

?

The programmer then adds fa0 and fa1 and writes the result to fa2. The ALU uses linear
uncertainty propagation equations to update the uncertainty information with function f (x,y)= x+y.
The partial derivative of f with respect to both x and y is one.

unfadd.s fa2, fa0, fa1

fa0 fa1 fa2

4.0 3.0 7.0

3.0 0.0 3.0

4.0 4.0

7.0

Finally, the programmer uses the uncertain ALU to calculate the product of fa1 and fa2 and write
the result to fa1. In this case,

f (x,y) = xy,
∂ f (x,y)

∂x
= y and

∂ f (x,y)
∂y

= x.

The uncertain ALU both reads from and writes to the floating-point paired register fa1.

32

unfmul.s fa1, fa1, fa2

fa0 fa1 fa2

4.0 21.0 7.0

3.0 9.0 3.0

427 49.0

7.0

The final variance of fa1 is equal to that calculated using the linear uncertainty propagation
equations with f (x,y) = y/(x+ y). The programmer has correctly propagated uncertainty through
this assembly snippet using uncertainty-aware instructions.

These arithmetic operations have introduced correlation between the result and the inputs. If the
ALU had ignored the covariance between fa1 and fa2 it would have calculated the new variance
of fa1 as 259 instead of 427. This suggests that accurate uncertainty propagation does require
the processor to store and update covariances. Section 5.4 discusses the implications of ignoring
correlation in more detail.

5.2 Accuracy of the Linear Uncertainty Propagation

Two approximations are made by the linear uncertainty propagation Equations 2.2, 2.3 and 2.4.
Firstly, the equations assume that the expected value of a function of random variables is approx-
imated by the function evaluated at the expected value of each random variable. The second
assumption is that higher order moments (for example the skew or the kurtosis) of x and y have a
negligible impact on the variance of z. These assumptions are known to hold if the f is approxi-
mately linear in the region where most of the pass of the joint probability density function of x and
y is location [4].

This section derives bounds on the errors introduced in the estimation of the mean and variance of
z = f (x) using the linear uncertain propagation equation. TODO TODO It additionally provides
conditions that guarantee that the relative errors will be small. The algebra is similar for a bivariate
function although there are significantly more terms.

33

Theorem 5.1. The error introduced by estimating the mean of z = f (x) using the linear uncertainty

propagation equations is

∞

∑
n=1

∂ n f
∂xn

E [δxn]

n!
(5.1)

Proof. Let x be the expected value of x and δx = x− x. Using the taylor series expansion, we can
write the expected value of z as

E[z] = E [f (x)]

= f (x)+E

[
∞

∑
n=1

∂ n f
∂xn

δxn

n!

]

= z+
∞

∑
n=1

∂ n f
∂xn

E [δxn]

n!

≈ z (5.2)

where z is estimated value of E[z] and all derivatives are evaluated at x. Equation 5.1 is the error
E[z]− z.

By comparing the magnitude of each term in the sum to the magnitude of z we have the following:

Corollary 5.2. The relative error |E[z]− z|/E[z] is guaranteed to be are small if∣∣∣∣∂ n f (x)
∂xn E [δxn]

∣∣∣∣≪ | f (x)|n! (5.3)

for all n = 1,2,

Corollary 5.2 provides no bound on the error if the any of the moments of a distribution are infinite.
In practice using the linear uncertainty propagation equations with pathological distributions such
as the Cauchy distribution will give large errors. Additionally, if f (x) = 0 then Equation 5.3 cannot
be satisfied and the relative error may be very large.

Theorem 5.3. Let F(n) be a function defined

F(n) =

√
E [δx2n]−E [δxn]2

σn
x ·n!

=

√
E
[
(δxn−E [δxn])2

]
σn

x ·n!
. (5.4)

34

The error due to estimating the variance of z = f (x) using the linear uncertainty propagation

equations is bounded from above by

∞

∑
k=3

k−1

∑
n=1

∣∣∣ f (k−n)
∣∣∣σ k−n

x F(k−n) ·
∣∣∣ f (n)∣∣∣σn

x F(n). (5.5)

The proof requires the following lemma:

Lemma 5.4. For a random variable X

|E[X]| ≤ E [|X |] (5.6)

E [|X ||Y |]≤
√

E [|X |2]E [|Y |2]. (5.7)

Equation 5.6 follows from Jensen’s inequality [12] where |·| is a convex function. Equation 5.7 is a
special case of Hölder’s inequality [10] with p = q = 1.

Proof. Let f (n) =
∂ n f (x)

∂xn be the partial derivative of f with respect to x evaluated at x. We have

var[z] = E
[
(z− z)2]

= E

(∞

∑
n=1

f (n)
(δxn−E [δxn])

n!

)2


=
∞

∑
m=1

∞

∑
n=1

f (m) f (n)E
[
(δxm−E [δxm])

m!
(δxn−E [δxn])

n!

]
. (5.8)

Let k = n+m. Then we perform a change of variables to give

var[z] =
∞

∑
k=2

k−1

∑
n=1

f (k−n) f (n)E

[(
δxk−n−E

[
δxk−n])

(k−n)!
(δxn−E [δxn])

n!

]

=

(
∂ f
∂x

σx

)2

+
∞

∑
k=3

k−1

∑
n=1

f (k−n) f (n)E

[(
δxk−n−E

[
δxk−n])

(k−n)!
(δxn−E [δxn])

n!

]
≈ σ

2
z . (5.9)

35

Using Lemma 5.4 we have

∣∣var[z]−σ
2
z
∣∣ (a)≤ ∞

∑
k=3

k−1

∑
n=1

∣∣∣∣∣ f (k−n) f (n)E

[(
δxk−n−E

[
δxk−n])

(k−n)!
(δxn−E [δxn])

n!

]∣∣∣∣∣
(b)
≤

∞

∑
k=3

k−1

∑
n=1

∣∣∣ f (k−n)
∣∣∣∣∣∣ f (n)∣∣∣E [∣∣∣∣∣

(
δxk−n−E

[
δxk−n])

(k−n)!

∣∣∣∣∣
∣∣∣∣(δxn−E [δxn])

n!

∣∣∣∣
]

(c)
≤

∞

∑
k=3

k−1

∑
n=1

∣∣∣ f (k−n)
∣∣∣∣∣∣ f (n)∣∣∣

√
E
[∣∣δxk−n−E

[
δxk−n

]∣∣2]E
[
|δxn−E [δxn]|2

]
(k−n)!n!

=
∞

∑
k=3

k−1

∑
n=1

∣∣∣ f (k−n)
∣∣∣σ k−n

x F(k−n) ·
∣∣∣ f (n)∣∣∣σn

x F(n) (5.10)

Where step (a) follows from the triangle inequality, step (b) follows from Equation 5.6 and step (c)
follows from Equation 5.7.

Again, we consider the magnitude of each term in the sum, this time comparing it to the magnitude
of σ2

z to give the following corollary:

Corollary 5.5. The relative error,
∣∣var[z]−σ2

z
∣∣/var[z], is guaranteed to be small if∣∣∣∣∂ n f (x)

∂xn

∣∣∣∣σn
x F(n)≪

∣∣∣∣∂ f (x)
∂x

∣∣∣∣σx (5.11)

for all n = 3,4,

Numerical data deriving from measurements often has an approximately Gaussian distribution.
Measuring physical phenomena typically involves averaging measured values which, by the central
limit theorem, produces a result with an approximately Gaussian distribution. We therefore consider
the application of Corollaries 5.2 and 5.5 for normally distributed values. If x has a Gaussian
distribution, the central moments of x are

E [δxn] =

0 if n is odd

σn
x · (n−1) · (n−3) · · ·3 ·1 if n is even.

(5.12)

36

Corollary 5.2 guarantees the estimate of an approximate float is accurate if∣∣∣∣∂ n f (x)
∂xn

σn
x

n · (n−2) · · ·4 ·2

∣∣∣∣≪ | f (x)| (5.13)∣∣∣∣∂ n f (x)
∂xn

∣∣∣∣σn
x ≪ | f (x)|

(n
2

)
! ·2n/2 (5.14)

n = 2,4, . . .

as Equation 5.3 is automatically satisfied for all odd n.

To apply Corollary 5.5 when x has a Gaussian distribution, we first substitute Equation 5.12 into
Equation 5.4 to give

F(n) =

√√√√√
2n−1

n−1 ·
2n−3
n−3 · · ·

n+4
4 ·

n+2
2 if n is odd

2n−1
n−1 ·

2n−3
n−3 · · ·

n+3
3 ·

n+1
1 −1 if n is even.

n(n−2)(n−4) · · ·
(5.15)

Therefore, the conditions in Equation 5.11 are satisfied if∣∣∣∣∂ n f (x)
∂xn

∣∣∣∣σn−1
x∣∣∣∣∂ f (x)

∂x

∣∣∣∣ ≪ n(n−2)(n−4) · · ·√√√√√
2n−1

n−1 ·
2n−3
n−3 · · ·

n+4
4 ·

n+2
2 if n is odd

2n−1
n−1 ·

2n−3
n−3 · · ·

n+3
3 ·

n+1
1 −1 if n is even

(5.16)

for all n = 3,4,

If the distribution describing the uncertainty of an approximate value is approximately Gaussian,
the assumptions of the linear uncertainty propagation equations hold if σx≪ |x| and the magnitude
of higher order derivatives of f are smaller than the magnitude of the first derivative. Regardless
of x’s underlying distribution, the estimate of the variance will have a significant error when the
derivative of f with respect to x is zero. This will occur if x is a stationary point of f (x).

37

5.3 Newton-Raphson Test

The quadratic equation

x2 +2x−6 = 0 (5.17)

has two solutions at x =−1±
√

6. Using the Newton-Raphson method, the equation

xn+1 = xn−
x2 +2x−6

2x+2
(5.18)

can be applied iteratively with x0 = 0 and will converge to the positive solution −1+
√

7. Let the
variance of the coefficient of x be σ2

b and the variance of the constant term be σ2
c . The coefficient of

x and the constant term may be correlated with a covariance of σbc. Applying the linear uncertainty
propagation equations (defined Section 2.4) to the quadratic equation, the variance of the positive
root is

σ
2
x = 0.09673σ

2
b −0.11755σbc +0.03571σ

2
c , (5.19)

and the covariance between the positive root and each coefficient is

σxb =−0.31102σ
2
b +0.18898σbc (5.20)

σxc =−0.31102σbc +0.18898σ
2
c . (5.21)

The uncertain extension is tested by comparing the variance of the result of a numerical solution
to Equation 5.17 to the values predicted by the linear uncertainty propagation equations. A small
uncertainty-aware C program, running in the adapted Sunflower Simulator, solved the quadratic
equation for a various values of σ2

b , σ2
c using the Newton-Raphson method. The following values of

the covariance, σbc, were used: 0, σbσc, −σbσc and, when σc > σb, σb. (The uncertain extension
does not allow programmers to directly set the covariance between two approximate values. These
values of σbc can be achieved using uncertainty-aware arithmetic.)

This test was run for 75 combinations of σb, σc and σbc and the percentage errors between the
values of σ2

x , σxb, σxc resulting from the Newton-Raphson solution and the analytical solution were
measured. The percentage errors were less than 0.1% in all but three out of the 75 cases.

The percentage error for σ2
x exceeded 0.1% when the correlation between b and c was one. (Twice

the error was 0.3% and once it was 3%.) When the correlation between two approximate floats

38

is one there may be subtractive cancellation in the linear uncertainty propagation equations. This
cancellation leads to numerical errors in floating-point calculations, causing the large percentage
error seen here. Future work on the uncertain extension is required to address these cancellation
errors. The author believes that a combination of improved ALU design and a more suitable binary
format for uncertainty would solve this issue.

Aside from the relatively small arising from subtractive cancellation in the linear uncertainty
propagation equations, this test gives confidence that the implementation of the uncertain extension
is correct and that the framework is viable. Moreover, the only changes required to adapt the C code
to make use of the uncertain framework were the initialisation of values using unf_create(). The
program displayed uncertainty information using printf(), unf_var() and unf_covar().

The fifth design criteria requires that the uncertain extension is simple to use for a programmer
with little to no prior experience of uncertainty propagation. The Newton-Raphson test case gives
confidence that the uncertain framework satisfies this criteria. Currently compiling and running
uncertainty-aware code in the Sunflower Simulator is possible but not straight forward. However,
these difficulties are not fundamental to the uncertain framework and future work on the uncertain
extension will provide a toolchain that is intuitive and simple to use.

5.4 The Uncorrelated Approximation

Section 2.3 noted that is may be viable to avoid storing the covariance between approximate
floats. The covariance can be simply ignored when computing the variance of the result of an
arithmetic operation. Ignoring the covariance is equivalent to assuming the inputs to the operation
are uncorrelated. Using the Newton-Raphson test case, this approach can be compared with the full
covariance method used by the uncertain framework.

The author removed two lines of code from the C implementation of the uncertain ALU so that,
when updating the variance, the ALU neglects the covariance term in Equation 2.2. The effect
of this change was measured using Newton-Raphson test from 5.3. When the ALU used the full
covariance information the variance of x, the calculated root of the quadratic equation, converged to
the value predicted by the linear uncertainty propagation equations. When the ALU neglected the
covariance term in Equation 2.2, the variance of x increased by about 33% with each iteration after
the best guess of x had converged to the correct value. After running the algorithm to convergence
(5 iterations in total), the estimated variance of x was consistently greater than 25 times the true
value and sometimes over a thousand times the true value. Based on the Newton-Raphson test,

39

neglecting covariance information causes the uncertain framework to overestimate variances which
gives a conservative estimate. For some applications, errors of a couple of orders of magnitude are
acceptable as long as they cause the variance to increase.

The second method to avoid storing covariances is to use the upper bound of Equation 2.6. This
upper bound assumes that the correlation between the inputs to an arithmetic operation is either 1 or
−1 depending on the sign of the two gradients. After adapting the ALU to use the upper bound for
the variance, the Newton-Raphson test was run. As when neglecting the covariance, the estimated
variance of x increased with each iteration of the Newton-Raphson algorithm even after convergence
of the best guess. In this case the variance increased by about a factor of four with each iteration.
When running Newton-Raphson to convergence (again 5 iterations), the estimated variance was
always at least five thousand times larger than the true value.

The author believes that the magnitude of these errors supports the decision to design an uncertain
framework that stores covariances. If the variance is over estimated by an order of magnitude when
running a simple calculation, the variance will grow too fast to be useful in any practical application.

Chapter 6

Conclusions

This report introduces the uncertain framework and proposes a non-standard extension to the
RISC-V ISA providing hardware support for uncertainty propagation. The author, after researching
methods for representing and propagating uncertainty, found the linear uncertainty propagation
equations to be the best basis for the framework. The approximate float type encodes the best guess
of a floating-point number and uncertainty information in the form of a variance. Therefore, an
approximate float is suitable for representing measured, estimated or calculated values that may
include errors.

This report proposes the uncertain RISC-V extension and defines new uncertainty-aware instructions.
Programmers can combine the best guess of a value with a known or estimated variance to create
approximate floats. Using uncertainty-aware instructions and the uncertain ALU, algorithms can
calculate the variance of their outputs as well as giving the best guess of the output’s true value.
The uncertainty in calculated values is estimated by propagating variance and covariances through
the algorithm as the uncertain ALU evaluates uncertainty-aware instructions. The ALU uses the
linear uncertainty propagation equations to calculate the variances and covariances resulting from
arithmetic operations.

The author implemented the uncertain extension as part of the Sunflower Simulator [19]. In
addition to setting a foundation for a future hardware implementation of the uncertain extension, this
implementation demonstrates uncertainty propagation using the uncertain extension to the RISC-V
ISA. By adapting the GNU assembler, creating pre- and post-processing scripts and implementing
the uncertain library, the author enabled programmers to use the uncertain framework in C.

42

This project evaluates the uncertain framework (as implemented in the Sunflower Simulator) using
the Newton-Raphson solution of a quadratic equation. This evaluation finds that the accuracy of the
estimated variance is vulnerable to floating-point rounding errors. Thus, the binary representation
of covariances needs be be carefully chosen to avoid vulnerability to rounding and the design of
uncertain ALU should avoid rounding intermediate values. The Newton-Raphson test showed that
adapting existing algorithms to use the uncertain framework requires no changes to the algorithm
and only minimal changes to the surrounding code.

Finally, this report considers the criteria of Section 2.1 used to design the uncertain framework.
This report proposes an ISA extension that is consistent with and compliments the existing RISC-V
standards. As the best guess calculated by an uncertainty-aware computational instruction is exactly
the single-precision result of the corresponding standard floating-point instruction, the uncertain
ISA extension has no cost in accuracy. A full evaluation of the execution speed and the hardware
requirements of the uncertain extension is left as future work. However, the author believes that,
with careful hardware design, a performant and efficient implementation is possible. The hardware
requirements of the uncertain extension look to be considerable, the author believes this to be an
unavoidable problem for methods supporting uncertainty propagation in hardware. The framework
developed in this report is compatible with the RISC-V architecture and is simple to integrate into
existing software. The report concludes that the uncertain framework built upon the uncertain
extension and supported by the uncertain ALU meets the design criteria.

References

[1] Kai O Arras. 1998. An Introduction To Error Propagation. Technical Report.

[2] James Bornholt. 2013. Abstractions and Techniques for Programming with Uncertain Data.

[3] V. Camus, J. Schlachter, C. Enz, M. Gautschi, and F. K. Gurkaynak. 2016. Approximate 32-bit
floating-point unit design with 53% power-area product reduction.

[4] A.A. Clifford. 1973. Multivaraite Error Analysis. Applied Science Publishers Ltd.

[5] Mosè Giordano. 2016. Issue: Arithmetic operations very slow. https://github.com/
JuliaPhysics/Measurements.jl/issues/25

[6] Mosè Giordano. 2016. Uncertainty propagation with functionally correlated quantities.

[7] GNU . 2019. The GNU Assembler, GAS. https://sourceware.org/binutils/docs-2.32/as/

[8] GNU Project. 2019. Other Built-in Functions Provided by GCC. https://gcc.gnu.org/
onlinedocs/gcc-9.1.0/gcc/Other-Builtins.html

[9] Zhengyang Gu. 2018. Pull request: Merge in RISCV support. https://github.com/
phillipstanleymarbell/sunflower-simulator/pull/28

[10] O. Hölder. 1889. Ueber einen Mittelwertsatz. Gött. Nachr. 1889 (1889), 38–47.

[11] IEEE 2008. ANSI/IEEE Std 754-2008, IEEE standard for floating-point arithmetic.

[12] J. L. W. V. Jensen. 1906. Sur les fonctions convexes et les inégalités entre les valeurs moyennes.
Acta Math. 30 (1906), 175–193.

[13] Robert W Keener. 2010. Theoretical Statistics: Topics for a Core Course.

[14] Michael Larabel. 2015. GCC Soars Past 14.5 Million Lines Of Code & I’m Real Excited For
GCC 5. https://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ

https://github.com/JuliaPhysics/Measurements.jl/issues/25
https://github.com/JuliaPhysics/Measurements.jl/issues/25
https://sourceware.org/binutils/docs-2.32/as/
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Other-Builtins.html
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Other-Builtins.html
https://github.com/phillipstanleymarbell/sunflower-simulator/pull/28
https://github.com/phillipstanleymarbell/sunflower-simulator/pull/28
https://www.phoronix.com/scan.php?page=news_item&px=MTg3OTQ

44

[15] NIST. 2019. The NIST Uncertainty Machine. https://uncertainty.nist.gov/

[16] RISC-V Foundation. 2018. RISC-V ELF psABI specification. https://github.com/riscv/
riscv-elf-psabi-doc

[17] RISC-V Foundation. 2018. The RISC-V Instruction Set Manual. https://github.com/riscv/
riscv-isa-manual/releases/riscv-user-2.2

[18] RISC-V Foundation. 2019. RISC-V "V" Vector Extension. https://github.com/riscv/
riscv-v-spec/tree/9688e01837c512466ddd73ac9f79147a1fe1b2d8

[19] Phillip Stanley-Marbell and Diana Marculescu. 2007. Sunflower: Full-system, Embedded,
Microarchitecture Evaluation (HiPEAC’07).

[20] J Taylor. 1997. An Introduction to Error Analysis: The Study of Uncertainties in Physical

Measurements. University Science Books.

[21] Ryan Voo. 2019. Pull request: rv32FD support. https://github.com/phillipstanleymarbell/
sunflower-simulator/pull/41

[22] Clifford Wolf. 2018. RISC-V Bitmanip Extension. https://github.com/riscv/riscv-bitmanip/
releases/tag/v0.36

https://uncertainty.nist.gov/
https://github.com/riscv/riscv-elf-psabi-doc
https://github.com/riscv/riscv-elf-psabi-doc
https://github.com/riscv/riscv-isa-manual/releases/riscv-user-2.2
https://github.com/riscv/riscv-isa-manual/releases/riscv-user-2.2
https://github.com/riscv/riscv-v-spec/tree/9688e01837c512466ddd73ac9f79147a1fe1b2d8
https://github.com/riscv/riscv-v-spec/tree/9688e01837c512466ddd73ac9f79147a1fe1b2d8
https://github.com/phillipstanleymarbell/sunflower-simulator/pull/41
https://github.com/phillipstanleymarbell/sunflower-simulator/pull/41
https://github.com/riscv/riscv-bitmanip/releases/tag/v0.36
https://github.com/riscv/riscv-bitmanip/releases/tag/v0.36

Appendix A

Risk Assessment Retrospective

The “4th Year Project Hazard Assessment Form” identified risks from computer use and lone
working. The work on this project consisted of design, programming and discussion. I encountered
no hazards during my work other than the two identified at the start of the year. If starting the
project again, I would assess the risk in a similar manor.

	Table of contents
	1 Introduction
	2 Designing a Framework for Uncertainty
	2.1 Design Criteria
	2.2 Prior Work
	2.3 Propagation of Uncertainty in Hardware
	2.4 Linear Uncertainty Propagation
	2.5 A RISC-V Extension for Approximate Floats
	2.6 Required Hardware Resources

	3 ``Uncertain'' Non Standard Extension for Approximate Floating-Point
	3.1 Uncertain Register State
	3.2 Special memory
	3.3 Opcode Encoding
	3.4 Uncertain Control and Status Registers
	3.5 Uncertain Load and Store Instructions
	3.6 Uncertainty-Aware Computational Instructions
	3.7 Uncertain Instructions
	3.8 Uncertain ABI

	4 Implementing the Uncertain Framework
	4.1 Uncertainty in the Sunflower Simulator
	4.2 Implementing an Uncertain ALU
	4.3 Compiling Uncertainty-Aware C
	4.4 Library Abstractions for the Uncertain Extension

	5 Results and Discussion
	5.1 Evaluating Uncertain Assembly
	5.2 Accuracy of the Linear Uncertainty Propagation
	5.3 Newton-Raphson Test
	5.4 The Uncorrelated Approximation

	6 Conclusions
	References
	Appendix A Risk Assessment Retrospective

